Some new Ostrowski’s Inequalities for Functions whose nth Derivatives are Logarithmically Convex
نویسندگان
چکیده
منابع مشابه
Ostrowski type inequalities for functions whose derivatives are preinvex
In this paper, making use of a new identity, we establish new inequalities of Ostrowski type for the class of preinvex functions and gave some midpoint type inequalities.
متن کاملSome Perturbed Inequalities of Ostrowski Type for Functions whose n-th Derivatives Are Bounded
We firstly establish an identity for $n$ time differentiable mappings Then, a new inequality for $n$ times differentiable functions is deduced. Finally, some perturbed Ostrowski type inequalities for functions whose $n$th derivatives are of bounded variation are obtained.
متن کاملostrowski type inequalities for functions whose derivatives are preinvex
in this paper, making use of a new identity, we establish new inequalities of ostrowski type for the class of preinvex functions and gave some midpoint type inequalities.
متن کاملNew Inequalities of Hermite-hadamard Type for Functions Whose Second Derivatives Absolute Values Are Quasi-convex
hold. This double inequality is known in the literature as the Hermite–Hadamard inequality for convex functions. In recent years many authors established several inequalities connected to this fact. For recent results, refinements, counterparts, generalizations and new Hermite-Hadamard’stype inequalities see [1]–[18]. We recall that the notion of quasi-convex function generalizes the notion of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Mathematicae Silesianae
سال: 2018
ISSN: 2391-4238,0860-2107
DOI: 10.1515/amsil-2017-0011